24 research outputs found

    Nanotechnology in medicine: European research and its implications

    Get PDF
    In this study, we explore and discuss nanoparticles and nanoscale materials and their use in medicine (nanomedicine) and pharmaceutics (nanopharmaceutics). The study is aimed at shedding light on this highly multidisciplinary research field and at examining the influence of research funding, industrial applications, and legal and regulatory frameworks on the research in this field, a clear understanding of which is essential to efficiently support the translation of research findings into industrial and clinical applications and to enable access to a larger society

    “Nanostandardization” in action: implementing standardization processes in a multidisciplinary nanoparticle-based research and development project

    Get PDF
    Nanomaterials have attracted much interest in the medical field and related applications as their distinct properties in the nano-range enable new and improved diagnosis and therapies. Owing to these properties and their potential interactions with the human body and the environment, the impact of nanomaterials on humans and their potential toxicity have been regarded a very significant issue. Consequently, nanomaterials are the subject of a wide range of cutting-edge research efforts in the medical and related fields to thoroughly probe their potential beneficial utilizations and their more negative effects. We posit that the lack of standardization in the field is a serious shortcoming as it has led to the establishment of methods and results that do not ensure sufficient consistency and thus in our view can possibly result in research outputs that are not as robust as they should be. The main aim of this article is to present how NanoDiaRA, a large FP7 European multidisciplinary project that seeks to investigate and develop nanotechnology-based diagnostic systems, has developed and implemented robust, standardized methods to support research practices involving the engineering and manipulation of nanomaterials. First, to contextualize this research, an overview of the measures defined by different regulatory bodies concerning nano-safety is presented. Although these authorities have been very active in the past several years, many questions remain unanswered in our view. Second, a number of national and international projects that attempted to ensure more reliable exchanges of methods and results are discussed. However, the frequent lack of publication of procedures and protocols in research can often be a hindrance for sharing those good practices. Subsequently, the efforts made through NanoDiaRA to introduce standardized methods and techniques to support the development and utilization of nanomaterials are discussed in depth. A series of semi-structured interviews were conducted with the partners of this project, and the interviews were analyzed thematically to highlight the determined efforts of the researchers to standardize their methods. Finally, some recommendations are made towards the setting up of well-defined methods to support the high-quality work of collaborative nanoparticle-based research and development projects and to enhance standardization processes

    Lock-in thermography as an analytical tool for magnetic nanoparticles: measuring heating power and magnetic fields

    Get PDF
    Magnetic nanoparticles and their ability to convert electromagnetic energy into heat are of explicit interest for various applications. However, precise quantification of their heating efficiency is not always upfront, and several parameters render comparative studies challenging. This paper describes the theory behind lock-in thermography, a new technique for quantifying the heating properties of magnetic nanoparticles. This technique allows the investigation of some of the potential sources of variability: key factors such as magnetic field inhomogeneity and its effects on the heating power are explored in detail. The presented results, obtained from various nanoparticle batches of different origins, highlight the importance of pursuing a standardized and systematic approach when quantifying the heating efficiency of magnetic nanoparticles

    Standardisation of magnetic nanoparticles in liquid suspension

    Get PDF
    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way

    GRAIN BOUNDARY MIGRATION IN RECRYSTALLIZED Mo FOILS IN THE PRESENCE OF Ni

    No full text
    La migration des joints de grains est examinée dans des feuilles de Mo recristallisées en présence de Ni entre 800 et 1400°C. La migration est prononcée aux températures élevées avec une quantité considérable de Ni sur la surface de Mo. Les joints de grains reçoivent des facettes d'orientation identique. Un traitement de long temps fait inverser la direction de la migration. L'analyse à la microsonde d'un joint de grain déplacé montre derrière le joint une solution solide Mo(Ni) et pas de Ni devant le joint. Sans l'addition de Ni on n'observe aucune migration des joints de grains.Grain boundary migration was investigated in recrystallized Mo foils in the presence of Ni between 800-1400°C. Grain boundary migration is pronounced at high temperatures when a high amount of Ni is present at the surface of the foils. Grain boundaries develop into facets having nearly the same orientation relationship. After prolonged annealing grain boundaries migrate back. Microprobe analyses in the wake of migrating grain boundaries show Mo(Ni)-ss while in front of the grain boundaries no Ni was found. Experiments with Mo foils in the absence of Ni show no occurrence of grain boundary migration

    Effects of PVA coated nanoparticles on human immune cells

    No full text
    Cindy Strehl,1,2 Timo Gaber,1–3 Lionel Maurizi,4 Martin Hahne,1,2 Roman Rauch,1,2 Paula Hoff,1–3 Thomas Häupl,1 Margarethe Hofmann-Amtenbrink,5 A Robin Poole,6 Heinrich Hofmann,4 Frank Buttgereit1–3 1Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany; 2German Rheumatism Research Centre (DRFZ), Berlin, Germany; 3Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany; 4Powder Technology Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland; 5MatSearch Consulting Hofmann, Pully-Lausanne, Switzerland; 6Department of Surgery, McGill University, Montreal, QC, Canada Abstract: Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine. Keywords: nanoparticle, cell viability, cytokine, monocyte, macrophag
    corecore